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LIST OF SYMBOLS
Geometrical Quantities

r - the space vector in the rectangular coordinates

X3, Xp .and x5 - the components of the space vector in the
rectangular coordinates

x - the coordinate .along the electron flow

t - the time variable

z - cylindrical coordinate along with the electron flow
r - the radial distance from the z-axis

R - the radial distance in the spherical coordinates which takes the
center of the anode orifice as the origin

6 - the polar angle of the spherical coordinates

¢ - the azimuthal .angle of the spherical coordinates

6 - an incremcntal polar angle from €

Q1 - the solid angle in the unprimed coordinates
Q' - the solid angle in the primed coordinates

1, - the length of the cylinder to the left of the anode plane
1, - the length of the cylinder to the right of the anode plane
D - the cathode-anode spacing of the diode

0; '~ the polar angle that the expanded -beam:at the back wall (due
to electron lens effect alone) would subtend at the origin

6, - the polar angle that the -expanded -beam at the back wail (due
to space charge effect alone) would subtend at the origin

Y - r/rs, the ratic of the radius of the electron beam at the z-plane
and that of the anode orifice.

Etectrical Quantities

- the potential in volts

p - the charge density in the electron flow
J - the clectric current density

F - the force per unit mass of electrons

i - the number density of the electrons at a point in the flow

iv
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the applied electric field
the electric field at the left end of the cylinder
the electric field at the right end of the cylinder

the radzal components of the electrical field across the
mantel surface

the anode current density in pa/cm”

the total current through the anode orifice

the primary electren current to the inner wall of the anode orifice'
the secondary electron current from the inner wall of the anode orifice

the secondary electron current per unit area of plane surface

3(8,8) - the current between the concentric cones with the apex angles 26

and 2(8 + 8) per unit area of the anode orifice

J(6,6) - the current density at the Z-plane between the polar angles 6 and

(6 + &)

J(8) - the current density at the Z-plane with a polar angle 6

Jg(6) - the current density at the Z-plane with a polar angle 6 due to

W -
T =
R. -

S

secondary electrons alone
the work function of the emission surface
the cathode tempesrature

the ratio of the space charge current to the current emission of the
cathode

3 Dynamic Variables

vo ~ the initial velocity of the electrons at the cathode

=]

ol

the velocity of the electrons at point x
the velocity vector of an electron in the rectangular coordinates

c, and ¢, the velocity components with respect to the rectangular
coordinates

the r-component velocity of the electron
the z-component velocity of the electron
the vector of the peculiar velocity of an electron

the mcan velocity of the electrons at a point
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b )

v - the mearn velocity along the electron flow
¥ ¢ - the summational invariants
TT - the mean transit time
TR - the relaxation time
the mean free path

@ - the electron temperature generally a tensor at a point in
the electron flow

€,, 8., 8. - the diagonal components of the electron temperature tensor
8, - the z-component of the electron temperature

8, - the r-component of the electron temperature

f, 9 - the velocity distribution functions of the electrons at a

point in the electron flow

4. Constants

m - the mass of an electron (9.10 (10}7°° gm.)
e - the charge of an electron (4.80 (10)7'° e.s.u.)
k - a Boltzmann constant (1.38 (10)~*° erg/degree)

ro - the radius of the anode orifice (0.00675 inch)
Z - the coordinate of the back wall of the anode chamber, (Z = 1.200 inch)
ty - the thickness of the anode wall (ro/3)

Q - the proportioral constant in the Child-Langmuir space-charge law

2
n - MU the ratio of the mear energy and the internal energy of the
2k@,. electrons at a point in the electron flow

€ - the normal-energy ccnstant of an emission surface
A, B, G, L and M - constants in the equations

h, h' and H - the proportionality constants in the equations of secondary
electron emission.

vi



PART 1
THERMODYNAMICS OF THE ELECTRON FLOW




1. INTRODUCTION

In the following pages, the electron flow in a diodic arrangement
will be treated from a general point of view. To elucidate an essential
feature of the physical behavior of the diode, a different viewpoint
will be taken at the very beginning. In contrast to the usual represen-
tation where, at a constant cathode temperature, the anode potential is
varied and the anode current 1s taken, we shall consider here the case
where the anode potential is kept constant but the cathode temperature
is raised. Thus, if a constant positive anode potential is applied and
the cathode temperature is gradually raised, the current in the diode
will first ascend quickly and then reach saturation with further in-
crease of the cathode temperature. This fact leads to the conclusion
that many of the emitted electrons are forced to return to the cathode
when the current reaches the saturation. The interpretation of this
behavior is that in spite of the existence of a positive potential on
the anode, the high accumulation of space charge in front of the cathode
may still depress the potential there so low that a considerable amount
of emitted electrons will return to the cathode.

In the process of developing an adequate quantitative description
of the physical behavior of the dicde, two phases can be distinguished
in the papers of the early workers in this field which successfully
explain several features of the diode. The problem was first studied!
under the assumption that all the electrons leave the cathode with the
same initial velocity and are accelerated in exactly the same manner in
the diode. In other words, thc electron velocity at any point in ﬁne
diode 1s considered as being single-valued. Then the problem may be
attacked only from Poisson’'s equation, the energy equation and the re-

lation between current, charge and velocity, namely,

dY¥ . - 4no (1)

dx
% mvx? = % mvo2 = eV (2)
J = pvy (3)

where x 1s the distanc: from the cathode measured perpendicular to the

plane of the cathode, v, is the velocity of the electrcn at a point x,

x
vo 1s the initial velocity of the electron at the cathode, V i1s thke

N2
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potential at any point determined with respect to the cathode, e and m
are the charge and mass of the electron, p and J are the charge and
current densities. The solution thus obtained is certainly not general
and, at best, may be applicable only to the case where all the electrons
2t any one point are moving in the same direction.

The essential work in the second phase was done by Epstein?, Fry3
and Langmuir4. Instead of assuming the electron velocity to be single-
valued in the diode, they considered a velocity distribution of the
emitted electrons at the cathode surface. The usual representation of
the potential distribution in a diode is given in Fig. 1. The potential
depression in front of the cathode is particularly emphasized in this
figure. If the potential minimum is found, one can determinz precisely
the trajectories of all electrons alter they are emitted from the
cathode. The interpretation was that those electrons with initial
kinetic energy higher than the potential minimum would come through to
the anode and those with less initial kinetic energy would return to the
cathode. It can be said to the merit of Epstein, that he brought up two
questions: a: What distribution function one must use to describe the
current. emission in terms of the initial velocity of the emitted elec-
trons; b: Where one must consider the problem of encounters between
electrons and electrons. Unfortunately, he did not attempt to solve the
zlectron flow problem taking encounters into consideration, but rather
assumed that the electrons are unaffected by eacih other throughout the
electron flow in the diode. On the other hand, he was forced to treat
the electron gas between the two electrodes as being in cn equilibrium
state which would, of course, demand that an energy exchange take place
between the particles of which this gas 1s composed.

To form a description of the gas urder consideration which would
come as close as possible to the actual behavior of the electrons in the
diodic arrangement, one should consider all the effects expected to
contribute essentially to the overall behavior of the electron gas under
the conditions in guestion. Three microscopic phenomena will be con-
sidered as the decisive factors in the determination of the macroscopic
behavior of the electron gas.

First, onz has to consider the change of particle density with
respect to the space coordinates due to the accelerated motion of the

particles between the cathode and the anode. Examination of the parti-
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cles at any fixed location in the flow, shows eac' Jf them moving in a
different direction with a different velocitv. The usual method 1s to
decompose the velocity of each particle into twoe vectors, one being the
mean velocity which is the same for all the particles at that location,
and the other beirg the spread velocity of that particular particle with
respect to the mean velocity. Thus the particles at that location in
the flow will have a mean velocity on which the velocity spread 1s
superimposed.

Next, one has to consider the external forces acting on the parti-
cles and the change of particle density with respect to their three
velocity components. These three velocity components together with
their corresponding space coordinates constitute in the usual way the
phase space (u-space) for that gas. The external forces acting on the
particles are those due to sources outside the location of the particles
in consideration.

Finally, in case of an electron gas, the internal forces acting on
the particles in question must be also considered. These interanl
forces are produced by the interactions between the particles which are
very close together. From a statistical point of view, it 1s believed
that the effect of these interactions can best be described by a concept
of encournters between the different particles. Since the treatment of
that problem in this paper includes the effect of the internal forces
on the process of encounters, the precise meaning of the potential?
will be one from which only the external forces are derivable.

The best tool to describe such a gas at any point within the flow

is the Boltzmann equation:

D

f=—e-v;f—?" Vof o+ S (4)

where the velccity distribution function f is the dependent variable,

but F, ¢, r and t are independent variables. It 1s clear that %i is the
t
rate of change in time of ,the velocity distribution functicn, whereas F
is the external force per unit mass, V. and V_ denote the cel operators
with respect to space coordinates and velocity coordinates rcspectively.
T ' . o
The quantity Eﬁf written in Eq. (4) is the rate of change of the veloc-

.

1ty distribution function due to the encounters of the particles, and

thereby 1s the result of all particle encounters at the location in




consideration. Hence the expression ?%? is an integral involving the
unknown function f (¢, T, t) of the problem. Sc¢ Boltzmann's eguation 1s
an integro-differential equation which indicates that the change of the
velocity distribution function at any point within the flow comes from
three sources that are precisely the three factors listed above. Since
the first term of the right hand side of Eq. (4) points out the non-
uni formity of the flow of the gas under consideration, the methods
adopted in this treatise will be similar to those developed by workers
dealing with non-uniform gases. Particularly, the nomenclature will
follow the one given by Chapman and Cowling$.

It will be shown that the electron flcw between the ¢ .thode and the
anode car be completely described with fecur macroscopic quantities.
These four quantities are:

1. External force field F

2. Electron nuuber density n

3. Mean velocity ©

4. Electron temperature 0
The temperature of a gas in general may be expressed as a second-order
tensor, which i1s an array of nine ordered components. In this paper,
however, the electron temperature consists of only three mutually
perpendicular components, ©,, ®, and 05, which are calculated from the
velocity distribution of electrons in the rectilinear flow. In a molecu-
lar gas where these three components are always equal, the temperature
may be further degenerated into one component, thus a scalar.

In a later part of this report, two examples will be given of how
the presented theory can be applied to certain flow problems. In
particular two cases will be distinguished: the one in which the three
temperature components, &, &, and @3, are equal te each other but vary
only with the location in the flow, which will be properly called the
“isotropic flow"; the other one, in which the temperature component in
the direction of flow, ®;, will vary with the location ir the flow; but
the other two components perpendicular to the flow, ®, and 05, will be
constant throughout the flow, hence different from &,. Accordingly this
case will be termed the "anisotropic flow'".

In this treatise, the effect of magnetic fields will be neglected.
This approach will finally yield exact solutions for the steady state.

e
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The solutions will degenerate to known expressions obtained from the
single-valued velocity theory 1f the effect nf ercounters is neglected.
All equations, except when explicitly noted otherwise, are written in
elecirusiaiic units, centimeters, grams, and seconds.
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IT. THE PROBLEM AND THE METHOD OF SOLUTION

In the preceding section, it was pointed out that an adequate tool
to describe the behavior of the electron gas in the condition of diodic
flow would be Boltzmann's integro-differential Eq. (4). This would
account for mutual interaction of the particles by the way of encourters.
From a practical point of view, the conditicn of the flow after it has
attained 1ts steady state should deserve first attention rather than the
very general case of studying the transients of this flow. This enables
one to make a considerable simplification of the very complex task of
solving generally Eq. {4), since it becomes unnecessary to account for a
change in time of the VDF' at a particular point in consideration. That

precisely means that

.= 0 (5)

QI
cr =

1f enly the steady state 1s considered. Since from now on only the
steady-state case 1s considered, the problem should be to solve the
steady-state Boltzmann equation

| P

-

=YL+ F Y 0 (6) .

c
for the VDF at any point within the flow. That precisely means, to find

uniquely an
f(c, T, fo(To))

which would satisfy Eq. (6), where, because of the character of this
particular equation -- being linear and of the first order -- one has a
free choice of the distribution function at a particular point in the
flow. This boundary condition was formerly introduced as fo(T,).

It is well known to workers i1n this field that an attempt to solve
generally the Boltzmann equatioﬁ leads to insurmountable mathematical
difficulties, even 1n the simplified form of Eq. (6), where only the
steady-state case 1s corsidered. In spite of this fact, several mcthods
were devised to solve this =quation for some particular cases.

One of the early simplifying restrictions imposed upon the problem
was the condition of uniformicty and steadiness of the gas under consid-
eraticn. This means, a.) no external force, b.) zero mean velocity.

*VDF, hecenfter stands for velocity distribution function.




The solution for f in this case is, of course, the wzl]l known Mexwellian
VDF.

Recently, Kihara’ studied the case where the gas under considera-
tion was composed of charged and uncharged particles. In the case where
the number of uncharged particles 1s much larger than the number of
charged particles, the collisions among charged particles can be con-
sidered negligible irn comparison with the collssions of charged with
uncharged particles. Solutions are obtained with a further restriction,
namely, that the drift velocity of the charged particles is small in
comparison with their thermal velocity. Obviously, the restriction
pointed out above cannot be imposed upon the case considered in this
paper, that of the flow of an electron gas in a high vacuum diode.
Unfortunately, there 1s at present no precise mathematical expression to

describe adequately the phenomenon of encounters between electrons.

: . ’ # e
Even with an approximate expression for the term, —%—, symbolizing the

at

encounters in the Boltzmann Eq. (6), one stil)] meets insurmountable
mathematical difficulties to find a solution for f.

No attempt will bc made in this paper to solve for the VDF under
particular restrictions imposed upon the problem. The method suggested
here will ke to defire a class of VDF's by stating properly the physical
properties of the flow and then selecting a representative function of
this class of VDF's which may contain the "true function’ as one of its
members. It will be seen that the so selected VDF will approach any
function of that class within the third moment.

Tn the course of describing the physical properties of the flow and
defining in that way the class of VDF's, any member of which will serve

as an approximation to the "true functior”" up to the third moment, one

At

links the microscopical quantities defining the VDi" with macroscopic
- 1.

vt 1 > d s - P By
quantities accessible to measurements, as was mentioned in the precedin

W

o

section.

Let ¢ be the linear velocity in coordinates fixed with respect to
an cbserver irn the laboratory. Then the electron number density in the
neighborhood of a point T in the flow is given by

n(r) =/ f (¢,¥) d¢ (1)

where, here and in the future, a notation / +°- da indicates an integra-




tion carried out over all components of the vector quantity a in the
entire a -spacc.

In accordance witch the usual definition of the mean value of an
arbitrary function with respect to a distribution functior f, the mean
value ¢ of the function T, the velocity of the electrons in the flow,
will be defined as

ol
Ol

-lj2s@EDd (8)

Egs. (7) and (8) will impose some restrictions as to the free choice of
an arbitrary VDF, sirce any suggested VDF must be consistent with the
conditions defined in Eqs. (7) and (8).  Since these equations are the
definitions of the zero and the first moments of the velocity distribu-
tion function f, at that state of the development, it can be said that
such a function f satisfying (6), (7) and (8) would approximate the
"true function" up to the first moment.

In a later development it will be necessary to look at the velocity
distribution of the electrons in the flow from the viewpoint of an
observer moving with the mean velocity B along with the electron flow.
Let u be the linear velocity in coordinates fixed with respect to this
observer. Then the electron number density in the neighborhood of a
point T i1a the flow is given according to (7)

n {f) =/ o (4,7 du (9)

where ¢(u,T) denotes the VDF as observed by the moving observer, and u,

the peculiar velocity of the electrons in this {iawe of reference, 1s

defined by

- _ -
u - c-

(10)

ol

he definition of the zerc and first moments, we

ct

Having made clear
now proceed to consider the second moment of the VDF. By the second
moment of the VDF i1s meant the following quantity:

Juwe (4, dv

where the symbol uu has been used to stress the fact that any two

components of the peculiar velocity u can be cumbined to form a second

-10-
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order term with respect to their velocity. Hence uu can be considered
as a tensor with the nine ordered components:

A

u; uy g uo, u, Us\

Us Uy U2 Uop Uz uUs

'\Us U4 Uy Uo Ug Ug/

This makes it obvious that the second moment has the properties of a
tensor, the components of which, multiplied by a constant factor L

conveniently define a new tensor
0 - =_m_r—o—o -— - —
8 (Y) ke /U u @ {u,r) du (11)

which 1s generally known as the temperature tensor in the neighlorhood
of the point T in the flow.

Since our aim is to obtain results from the presented theory which
are applicable to practical situations, structures with rectilinear
electron flow (as concentric, coaxial, parallel plane structures) wiil
certainly receive first attention. Restricting oneself to the general
class of structures with rectilinear flow, a convenient choice of the
coordinates can be made by placing one axis parallel and the other two
axes perpendicular to the flow. The axis parallel to the flow i1n the
following will be labeled with index 1, the other two, 2 and 3. The
necessary and sufficient condition to characterize rectilinear flow 1s to
say that the net transport of matter is carried out along one and only
one fixed coordinate. Explicitly, this means that the mean velocity, g,
of the flow is parallel to the external force field F in the flow. This
immediately implies a simplificaticn of Eq. (8), which defines the me
velcecity in 2ll different directicns ©f the flow. With the particular

choice of the coordinate system as described above, it follows that

./r Ui‘p(l_l.,;:) dl.l1 = 0 8 1 = 2,3 (12)

The choice of this particular geometry, with 1ts symmetry proper-
ties expressed through Eq. (12), has a most important bearing on the
structure of the temperature tensor ® defined by Eq. (11). A glimpse of

the tensor array for the u;u

% terms indicates immediately that all the

]
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non-diagonal terms will vanish and the temperature tensor ® reduces to

/8, 0 0
\0 0 B,

Sincc each of the diagonal terms represents the mean square of a veloc-
i1ty component, the electron temperature is merely a measure of the mean
kinetic energy with respect to an okserver moving with the mean velocity
B along with the flow. This definition of temperature will be, of
course, in agreement with that in thermodynamics when the particles
under comsideraiion reach the state of equilibrium.

Having now properly interpreted the physical significance of
the second moment, we are ready to turn our attention to the third
moment of the VQE; In accordance with the usual definition, one can

write for Mz, the third moment:

-3

Ms =/ i o (8,7) dd
Ms can be interpreted as the rate of net flow of the kinetic energy with
respect. to an observer moving with the mean velocity ¢ along with the
electron flow. It will Le seen later in the development, but also may
be worth noting here that in practical situations the average velocity
with respect to such a moving okbserver 1s much smaller than the mean
veloeity<€>of the electron flow. The net flow of the kinetic energy
with respect to such a moving observer is consequently much smaller than

the flow of the kinetir energy with the mean velocity ¢. That is

kO . <cme’

2 2

For this reason, the third moment Ms; can be considered to be zero, thus:

J @ e (@,F) du-=0 (14)
It may be noted that every even VDF would zutomatically satisfy the
condition expressed in Eq. (14). However, Eg. (i4) does not necessarily
restrict VDF’s to be even functions of u. This minor restriction

imposed upon the problem does not prevent us from including a vast
number of functions 1n the class of possible VDF's and just enakles us

te procure solutions for the present prcllem.

[
3]



Since all the statements so far regarding the physical properties
of the electron flow have been so general that they can te considered
valid wkzther encounters or no encounters between the particles take
place, we must now turn our attention to the more specific knowledge
one can obtain 1f one considers that even i1f ‘encounters have a major
role in the physics of the flow, one 1s able tec select certain quanti-
ties which will not change before and after the encounters. Although no
detailed picture of the process of encounters may ever be obtained, it
is at once evident that, for example, the number of particles engaged in
mutual encounters will remain constant before and after their inter-
actions. Similarly, 1t is clear that the total momentum and energy cf
the participating particles will remain invariant during this process.
Those guantities remaining unchanged during the complex process of
encounters are generally known as summational invariants. Their invari-
ability gives some additional bits of information to a sufficient
description of the phy;ical properties of the flow.

To state the three previously indicated conditions in mathematical

X

dt
denotes the change of the VDF due to the particle eacounters. Thus, the

terms one has to remember that the symbol in the Boltzmann Eq. (6)

statement that the number of particles engaged in mutual enccunters will

remain constant before and after their interactions, can be written as

a.f .
J 2-d&c=0 (15)
dt
Similavly, the statement that the total momentum aand energy of the

Gl U
participating particles will remain unchanged through the encounter

process, can Le written

a f -t E
S meg &= dec = 0 (16)
at
-2 3 f
[ nc_ e~ Jg =
I v dec 0 (17)

In genera!l, for ary function ¢ which should remain unchanged during

encounters, one can write

.df ‘
fl,bait—dc=0 ' (i8)

Thus, the suummational invariants, Y,, ¥, and Y., 1n the three preceding

=3



cases under consideraticn, will assume the values,

v, = 1 (19)

and ¢2 = mc (20)
-2

¢,3 = m_g_ (21\

Having obtained the summational invariants es well as the relations
between the VDF and macroscopiec quantities of the flow, one can now
solve the problem in a straight forward manner. With the aid of y;’s,
it may be noted that the term,

Oef

ot
describing the effect of particle encounters can be reduced to zero if
1t 1s multiplied by a summational invariant and integrated with respect
to ¢ i1n the velozity space. Thus multiplying each term in the Boltzmann
Eq. (6) with the y;’'s and integrating with respect tc ¢ in the velocity

space, we have

J i e - ViEdE +J ¢y F - V7Ede = [ y;

g.f
c ==

c
ot

(22)
According to Eq. (18), the term on the right-hand side vanishes 1in all
cases. By this method, the exact expression of

Bef

ot

is therefore not needed, but the effect of particle encounters has
properly been taken into account.

Inserting, successively, in Eq. (22) the three values of the
summational invariants, \;, Y» and {3, as given in Eags. (19), (20) and

(21), a set of three integra! equations of the following form is ob-

tained.

Case y: J& -9 £dE+/F -V fde = 0 (23)
Case y;: mfé e -Vfde+m /[T F-Vfde=0 (24)
Case 1 DV & © cVLF e 2/ F +v.fdex 0 (25)

-14-



With the aid of the four definitions of the zero, first, second and
third moments of the VDF as given in Eqs. (7), (8), (11) and (14,, and
after some mathematical transformations (see Appendix I), the six

1ntegrals occurring in the set of equations above can be carried out:

vV (nd) = 0 (26)

V- (knb) —m [F-¢ + (V3] = 0 (27)

v o [(E&%gidél + &+ [V (knB)) + kn@ - (V) —mnd « [F- & + (V)] =0

It may pe noted in the set of the foregoing equations that "carrying
out" the integrals was essentially replacing the microscopical guanti-
ties, f, ¢, f(r,¢) by a set of macroscopically definable mean values,
viz., F, n, C and ®. Their connection with the microscopical quantities
was established in the definition of the different moments. It is in
this step of the development that one loses the microscopic view and
gains the macroscopic observation.

The physical content of Egs. (26), (27) and (28) can easily Le
realized. Equation (26) 1s the familiar equation of conservation of
charge and matter. Fquation (27) is known as the equation of motion in
the hydrodynamics of perfect fluids. The third equation, Eq. (28),
essentially expressing the conservation of energy in the ilow, 1s the
new bit of information which is obtained by adopting the more general
viewpoint of an existing temperature tensor © in the flow. The clas-
sical viewpoint 1s obtained at once, 1f the terms involving © are
neglected. If @ 1s put to zero, Eq. (28) reduces to Fq. (27) which 1in
losing its term

V - (kaB)
would precisely becoms the classical Eq. (2) menitioned in the intro-
duction.

In other words, in the classical case the problem was attacked Ly
sclving Poisson’s equation with the aid of the energy equation and the
relation between current, charge and voltage. Turning our attention
back to Egs. (26), (27} and (28) which express the more general view-
point adopted in this paper, one may note, that up to this point only
Ehree equations are at our disposal, whereas four macroscopic quantities,

F, n, ¢ and ® are expec-ed ts be computed. Since Poisson’s equation



correletes two of the four macroscopic quantities under consideration,
- 2
V- F = 4nSen, (29)
viz., F and n, and is independent of the thiee egquations mentioned akove,
it can be used as the necessary fourth equation to solve for the four
macrosccpic quantities, F, n & and ©.

A brief summary of this chapter on the problem and its solution may
be appropriate. The problem consists 2f sclving Boltzmann’s equation
for the steady state case and for rectilinear flow, taking an integral
effect of encounters into consideration. Solving Boltzmann’s equaticn
means, in the usual sense, solving for VDF under the particular condi-
tions of the flow under consideration. But with the aid of four de-
finitorial equations for the zero, first, second and third moments, a
class of VDF’s could be defined which may contain the "true function"
and where any representative member of this class would approach any
other member of this class of functions up to the third moment. With
the knowledge of the overall behavior of a group of particles engaged in
mutual encounters, expressed by the three summational invariants, three
partial differential equations could be derived, connecting four macro-
scoplc guantities, ?, n, ¢ and ®. With the additionai information with
respect to distributed space charges expressed by Poisson’s equation, a
set of feur mutually independent equations is obtained, which represents
the ultimate amount of information obtainable in describing the physical
properties of the electron flow from this general viewpoint. It can be
seen easily that these four equaticns are not yet sufficient to solve
for the four macroscopic quantities under consideration. The reason 1is,
of course, that the four equations are written in vector form and repre-
sent in the case of rectilinear flow a set of four scalar equations,
since F and € in Eq. (27) are parallel to each other. The number of
unknowns, however, is six, since 8 has three components. Thus, two more
conditions must Le established to furnish the set sufficient for de-
termining coumpletely the desired macroscopic quantities. These two
additional conditions can be considered as particular specifications of
the probleimn. Two such problems, as i1t was indicated in the introductiion
namely, the isotrapic flow and the anisotropic flow, will Le separately
treated i1n the next section.

Before concluding this section on the problem and the method of 1is

solution, 1t may be pertinent at this time to give a representative
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tfunction for the class of VDF’s which may contain the "true function" as

one of i%s members. Considering that any VDF selected should be con-
sistent with the Eqs. {8), (11) and (14), which define the first, second

and third moments, ore may suggest, for example, a function of the form,

2 2

2
N = ()% ? T T T B
) 1(2nk) (8,0,6,) exp [ 2k(01 + e @n)] (30)

e (
AN

where n and ©'s may be funztions of . This function is generally known
as Schwarzschild’s law® of ellipsoidal distribution of velocities.
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III TWO ESSENTIAL TYPES OF FLOW

In the preceding section, it was pointed out that two more condi-
tions are necessary for the complete determination of the cix macro-
s coplc quantities, ﬁ, n, %, ®,, 0, and 8;. In searching for the two
conditions in question, one may explore certain specifications of the
generul problem, which should be appropriate for the actual situation
under consideration. For example, imagine a situation in which the
group of particles umder consideration during their life time 1n the
diode may have sufficient time to complete their mutual interactions.
If it 1s possible to give a reasonable estimate of the time required
to complete the mutual interaction, which may be called relazation time
tR, then this situation is indeed realized if the transit time tp for

those particles is much longer than the '

'relaxation time" tg. The
statement above, that the group of electrons 1s allowed sufficient time
to "complete their mutual interactions'" means, of course that this
group has reached i1ts equilibrium condition. From this, one can 1immedi-
ately infer that the three temperature components, ©,, ®,, @,, for this
particular group of electrons should be equal to each other. Hence, a
situation as described above may be properly defined by:

B, = 8, = 8, (31)
Since all three temperature components in this case degenerate to one
temperature scalar, this type of flow may be called the "isotropic flow".
In our search for two more conditions essent:izal i1n solving for the six
macroscopic quantities, E, n, g, @,, 8,, 05, one may note, with the aid
of the set of four fundamental differential equations (26) - (29), that
the specification as described above furnishes exactly the two necessary
conditions over Eq. (31). Thus a necessary and sufficient set of
equations has been established 1n order to determine completely the
macroscoplc Guantities under considzration.

Similarly, imagine 2 situation in which the group of electrons
emitted fiom the cathode are so swiftly drawn to the anode that no
appreciable amount of particie encounters can take place in the space of
the diode. This situation 1s realized 1f the transit time tT for those
electrons is much shorter than the relaxation time tg for this particu-
lar group. Obviscusly, i1n this situation, the group of particles under

consideration will not reach their equilibrium condition. However, anr




observer, moving with the mean velocity along the electron flow, should
in this case not be able to observe any essential change of the electron
velocity distribution in the velocity components perpendicular to the
axis of the flow. Thus the temperature components perpendicular to the
direction of the flow become constant in the space interval of consider-
ation. Hence, a situation as described above may be defined by:

08, 06,

s W ey W 2
5%, | 3x, 0 (32)

Since all three temperature components in this case do not necessarily
degenerate to one temperature scalar, this type of flow may be called
the "anisotrepic flow". One may note that the specification as de-
scribed above again furnishes exactly two more necessary conditions in
solving for our macroscopic quantities. Thus, in this case tooc, a
necessary and sufficient set of equations has been established in order
to determine completely the macroscopic quantities under consideration.
The two situations briefly described above, namely the "isotropic flow"
and the "anisotropic flow'", will be separately discussed in two later
paragraphs.

Now, we will turn our attention to a more precise determination of
the two terms already discussed, viz., the "relaxation time",,;T,,and
the "transit time", tg. In making a reasonabie estimate of the time
required for a group of particles to complete their mutual interactions,
we shall follow essentially Chandrasekhar’s extensive work? on the
probiem of encounters in stellar systems. The analogy with the electron
gas 1s rather ohvious if one considers that in both cases the inter-
action forces drop with the inverse square of the mutual distances of
the particles in question. Chandrasekhar defines a relaxation time for
a star cloud at that time: most of the particles need to alter, through
the process of their muiual interactions, their original kinetic energy
by about an equal amount. Accepting this definition and converting the
quantities designed to fit the stellar case i1nto quantities appropriate

for the electron gas, one finds for the so determined relaxation time,

3/2
o - 9 vm (k@) (33)
R 16v'n 4 346
rie” lp——"——
zeznila
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With expression (33) for the "relaxation time", one can evaluate another
quantity of 1inierest, namely, the "mean free path". It may seem im-
proper to define a mean free path for the electron gas. Nevertheless,
it 1s instructive to define a length

% (34)

which plavs the same role for non-uniform electron gases as the mean
free path does in the classical kinetic theory of gases, where the
mclecules are idealized as rigid elastic spheres. Of course, this
"mean free path" is defined in the moving coordirate system and is
applicable whether the gas as a whole is actually moving or not.

Having obtained an expression of the "relaxation time" for the
group of particles under consideration, one may now determine the trans-
it time for this grcup of particles. Since the transit time for a group
of particles in a diode 1s nothing morc than tle mean life time of this
group 1n a spatial interval an appropriate definition of what we may

call a "mean transit time'" may be given by

tr = [ (35)
2 ¢ (x;)

for a spatial interval between points a and b in which the electron gas
is under consideration. Since the mean velocity, é, is a single-valued
function of x,, formula (35) is applicable to the entire region of the
diodic flow. Without the defirition of the mean velocity (Eq. (8)), one
cannot define the transit time of electrons in all cases, especially of

the emitted electrons which are cventually returned to the cathode.
The fundamental dis.inction between the two situations described
above -- the isotropic and the anisotropic flow -- 1s that for isotrop-
ism, the relaxation time (tg)js is very short in comparison with the

transit time tt
(tp). < < ¢
R¥s o T

whereas for anisotropism, the relaxation time (tg) should be much
an

longer than the transit time tp

\ > >
(tRIan tT

This allows oae to draw an important conclusion with respect to the

-20-
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number density in both cases, since tg is about inversely proportional

. to the number density of the electrons under consideration (see Eg.
(33)). Assuming the transit time tT for both cases to be roughly the
same, the two cases may also be distinguished by the inequality

(tR)an M (tR)is

or using Eq. (33), which expresses the relaxation time in terms of the
parameters describing the electron gas under consideration, one finds

. 3 (n)an < £ < (n)is

This strong inequality suggests that Poisson’s equation will degenerate
to Laplace’s equation in the case of the anisotropic flow.

The specifications given for the two situations are based upon the
determination of the "relaxation time" and the "mean transit time" of
the group of particles in question. In concluding the introductory part
of this section on the two essential types of flow, it might be well to
list all the equations which will be used in solving the problen.
However, for the sake of simplicity, we shall confine ourselves to the
parallel plane diode. For the electron flow in the parallel plane diode
where the variations of the macroscopic quantities,.ﬁ,lyfgl €,’s are
only 1n the direction of the flow, the general eguations derived for the
electron flow are reduced to simpler forms. The general eguationms
(26)-(29) expressed in their reduced form, together with the conditions
of the specifications as mentioned above, are listed as follows:

d (av) = 0 | (36)
dx
5L'(kn®1) -~mn (F-v dv) - ¢ (37)
dx dx
d kavig @, + 0, + 85)] —mnv (F— v dvy - o (38)
= dX 2 . dx .

In the case of the "isotropic flow",
B : dfF=9 (39a)
dx

r!_, ) d 5 = 4d =
*:;:; i dx T2 dx ea t] (408)

i=-21-
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n the case of the "isotropic flow",

2
m

dx (39b)

0, = 8, = 8, (40b)

where F, v end x are used instead of ﬁ, B and x,.

The proklem now consists of solving simultaneously the set of the
above equations, (36) - (40). For the electron flow, Egs. (38) - (38)
are valid in general. In the case of the anisotropic flow, Egs. (39a)
and (40a) are added, whereas in the case of the isotropic flow, Egs.
(39b) and (40b) are added. However, some insight can be gained immedi-
ately by integrating Eq. (36) with respect to x. Equaticn (36) now
becomes

nv = j (41)

where j 1s an integration constant of the equation. Since the displace-
ment current is zero in the steady-state case, je becomes the actual
electric current density in the diode circuit. Equation (41) gives the
functivnal relationship between the number density n and the mean
velocity v of the electrons in the flow.

Another possibility of establishing a functional relationship
valuable for both cases would be to eliminate the external force F from
Egs. (37) and (38). Flimnating F from these equations and making use
of Eq. (36), one obtains

5o (8 v 8.4 8,) < GlLe g (42)

In the case of the "anisotropic ilow" where the temperature components,

®, and 95, are independent of x, Eq. (42) yields

8, (x) [v(x)]® = 8, (o) [v(0)]1® = constant {43)

where 0;(o) and v(o) are the x-component of the electron temperature
and the mean velocity at the emission surface. The macroscopic gquanti-

ties at the emission surface are known as boundary values, the evalua-

tion of which will Le given later. Similarly, in the case of the
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"isotropic flow" where the components of the electron temperature are
equal to each other, Eg. (42) then yields

[6,(x)]° [v(x)]% = [6:(0)]® {v(0)]? = constant (44)

These two equations indicate that the electron temperature in the
electron flow of a parallel plane diode decreases as the mean velocity
of the electrons increases (Appendix II). If one could find the mean
velocity as a function of x in the electron flow under consideration,
the variation of the electron temperature along with the electron flow
could be determined from Eqs. (43) and {(44).

In the following, we shall consider separately the two types of
flow; first, the "anisotropic flow" and second, the "isotropic flow".

3.1 Anisotropic Flow

As mentioned before, the problem now is to solve simultaneously
Egs. (36), (37), (38), (29a), and (40a) for the case of the anisotropic
flow. It is clear that the LaPlace equation, (39a), for the field
between two parallel planes merely implies that

F=2E (45)

where E 1s the applied electric field, independent of the coordinate x.
With Eq. (45) and the two functional relationships, Egqs. (41) and (43)
just derived, one 1is able to replace n, ©; and F of Eq. (37) in terms of
the mean velocity v and the applied electric field E. Equation (37)
vhen reads

vadr _ A dv _eE -

dx % dx m

~~
e
O
S

where
3k 0, (o) [v(o)li
m

Since ©;(o) and v(o) are the boundary values of the temperature com-
ponent and the mean velocity of the flow, A is independent of the
coordinate x. After the equation 1s integrated with respect to x, we
have

v+ A _Zelx.g (47)
v m
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In this equation, G is an inlegration constant independent of x. Since

= v(o) at x = o

one obtains frow Eq. (47) that

A

v?(o)

G = vi(o) +

With the constants A and G, determined as above, Eq. (47) can Le written

vl o\ e [
{E(OJ mlv(o)l® V(X m[v(o)] (48)

From the above equation, one may calculate the mean velocity v as a
function of the coordinate x for an electric field E.

In order to expose the physical ccntents of Eq. (48), it is first
necessary to show how the boundary values in the eguation are de-
termined. To do this, the surface condition of beth cathode and anode
has to be found. Althecugh our understanding of the thermionic emis-
sionl® has been advanced considerably in the iast decade, we are still
unable to calculate the quantities n, v and ®; accurately at the emis-
sion surface. Here we use a reasonabie model from which these values
can be evaluated. The accepted model is as follows. All the electrons
which arrive at the anode are coliected by the anode without causing any
stray disturbances. The emissicn surface can be simulated by a unifcrm
surface nf work function W with a velocity dependent transmission
coefficient D of the simple form, Fig. 2, pg. 4. Based on Nottingham’s
experimental work!l, this is designed to approximate the actual coef-
ficient by a simpler form in which the normal energy € is of the order
of half an electron volt. Then the VDF at the emission surface becomes
m(cs? + c2” + ca”)

2kT , C1q > 0 (49)

f(o)

%ﬁ; D exp [~ E%Q exp [ -

=0 , €4 < 0

wihere T 1s the temperature of the emission surface. With this VDF at

the emission surface, the boundary values n(o), v{o} and ®;(o) can be
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evaluated in a straighi. forward manner (see Appendix III). The results
are as follows:

n(o) = Mﬂi Ty exp [- & (50)
2h e€ k

v(0) = 2ZKT)% [1 - exp(— e¥] (51)
Tm P kT

0.(o) - 388 T (52)

Having evaluated the boundary valucs as above, one can see that
Eqg. (48) 1s normalized by the mean velocity of the electrons at the
emission surface. As compared with Eq. (2) of the single-valued veloc-
ity theory, Eq. (48) contains an additional term, the second term on the
left- hand side of Eq. (48). Since the factor

3k 91(0)

mv?> (o)
in this term is usually of the order of unity, this additional term 1is

actually a correction term to calculate the mean velocity of the elec-

trons close to the emission surface. When the ratio

yi{x)
v(o)

becomes large, the velocities calculated from Eq. (2) and Eq. (48) arc
about the same. After the mean velocity of the electrons in the diode
is obtained, the number density and the electron teiperature can easily
be determined from the functional relationships derived before. 1In

short, from Eqs. (41) and (43),

n(x) = n(o) [£fe)] (53)
v(x)
and
8.(x) = 8(o) [woly? (54)
vix)
As a conclusion, a typical example for the anisotropic fiow way bLe
cited here. Suppose the work function!? of the emission surface is

[ S}
(34}
]
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1.2 volt; the values of tg and A {Fig. 3) are calculated from Egs.
(33) and (34) against the cathode temperature. In a case of operation
where

cathode temperature = 700°K
cathode anode spacing = 0.5 cm

anode voltage with respect to the cathode = 300 volts
one obtains from Eq. (33)

tg = 1.8 x 107 seconds,
but from Eq. (48) and Eq. (35)
tr = 1.9 x 107° second,
The result that
bT < < R
agrees with the specification given to this type of flow.

3.2 Isotropic Flow

As pointed out earlier, the number density n 1is generally high in
the isotropic flow. This may be due to a weak applied field which does
not draw all the emitted electrons away quickly enough. Also, it may
occur 1f the emission current i1s too high for the applied vcltage on the
anode. In either circumstance, electrons may be accumulated to a very
high density in front of the cathode. So the problem in this type of
flow would be to solve simultaneously Egs. (36), (37), (38), (39b) and
{40).

The processes of solving these equations are very similar to those
used 1n the case of the anisotropic flow. 1In the first step, the
Poisson’s Eq. (39b) can be written as

dE - 4n ie (55)
ax

mv

after relation (41) bLetween the rumber density n and the mean velccity v
is used. In the second step, one may replace n and 8, of Eq. (37) in

terms of the mcan velocity v through the two functional relationships,
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Egqs. (41) and (44), derived before. Then,

dv - _B_dv _ g -
Ydx v ¥ dx Feo (56)

where

B = §k %;m(o) [v(o)]Q/s

One may eliminate F from Eqs. (55) and (56) in order to obtain an
equation for the mean velocity v for this type of flow. Differentiating

Eq. (56) with respect to x and then combining it wich Eg. (35) gives

(1- By ydlv. (1 + 5B ) (dv)? _4me® . g (57)
s 2.8/3 dx

U S L . mv
This equation does not involve the independent variable x explicitly!3
and 1t may therefore be reduced to a first-order linear differential
equation by suitable transformations. The solution (see Appendix IV)
can be written as
%

= - _B y.
e sve/s (1 ve/e)vdv (58)

Ny
x + L = /’ IM _ 8nje’v(y + _3B_)
S
This solution contains Lwo integration constants, L and M, which have to
be determined by two boundary conditions. t 1s clear that the non-
constant force field, Eg. (39b), adds more difficulties in solving the
problem for this iype of flow.

Again, we shall use the reasonable model with which estimation of
the boundary valuen can Le made for the case of the isotropic flow. In
doing this, 1t 1s obvious that the present method is Ly no means the
mest accurate, but certainly serves as an 1llustration of how boundary
values in this problem may Le determined.

In ths 1sotropic flow the expression for the cathode emission

r )
i = 4‘5? (kT)? g 1 - exp {- l%%]F exp [~ l%"lyj (59)

remains the same; but a large portion ¢f the =mitted current is com-
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pensated by the returning component of the current at the emission sur-
face. Thus the actual current density, j, of the isotropic flow is one
such that
LRy << (60)
Je
This parameter Rg is the ratio of the number of electrons actually drawn
to the anode and the number of emitted electrons per unit area in unit
time. Hence Rg can be regarded as one of the operating conditions of
the diode. In this situation, the electron gas at the emission surface
would net follow the half-maxwellian VDF, Eq. (49), but rather approach
a nearly symmetric maxwellian VDF. This nearly maxwellian electron gas
may stretch itself out to a great extent away from the cathode. In other
words, one can then assume the electron gas at the emission surface to
be 1in equilibrium with the emitter,

8:(0) = T (61)

Since the electron gas at the cmission surtface is nearly maxwellian, the

returning componecnt of current 1s
%
n (o) ££t1
AL T

Wich the above description of this model, the boundary values of n, v
and ®, can be determined at the cathode surface. They are:

1

n(o) = j(1 - RS)[%?? e (62)
| TR |
_ _Bs [k1)*

v(o) = 8- 27@ (63)

9; (o) = T . (64)

in which j,. T and Rg are considered as known quanticies.

To evaluate the two constants, L and M, 1n Eq. (58), another

boundary value of the mean velocity v must Le determined for this

-99.

P B YR IR g, SR, e o AT



probler. For this purpose one may consider that the number density of
the electren f{low decreases as the mean velocity increases in the flow.
From the expression for the relaxation time, it 1s noticed that the
relaxation time 1s about inversely proportional to the number density of
the electrons under consideration. Because the condition of this type
of flow is specified through the relaxation time, it is apparent that
the isotropic flow may become anisotropic if the electrons in the flow
are accelerated to reach sufficiently high velocities. In the region
where the mean velocity reaches a sufficiently high value, the percent-
age difference of the mean velocities calculated from the Eqs. (47) and
(58) for the two tvpes of flow i1s much smaller than the difference 1n
the region of low mean velocity. Because of this fact, a good approxi-
mate value of v(x,) can be calculated from Eq. (47) for the anisotropic
flow, provided that a suitable distance x, 1s selected for the calcula-
tion. In the space-charge-limited flow, this distance x, may be longer
than the actual cathode-anode spacing and i1s used only for the purpose
of detesiwilning the second boundary value of the mean velocity in the
flow.

The boundary values of the mean velocity at a distance t, and at
the cathode surface are necessary and sufficient tc evaluate the con-
stants, L and M, in Eq. (%8). After evaluating these constants, one can
calculate the mean velocity v(x) throughout the isotropic flow. Using

the same manner as fgr the anisotropic flow, one can also find that

=
n(x) = n(o) !i(% (65)
s
and
_ Sl 2/ 3
81 {x) = 8, (o) 31(%_] | (66)
As a cenclusion for this section, some calculated results may be
cited here. Using the same example as given for the anisotropic flow,

one may raise the cathode temperature to 1100°K. When the anode voltage
is about 300 volts, the parameter Rg has the value of 0.005. From Egs.
{58) and (33), the mean transit time of the flow is obtained

—8
tp = 2.4 x 10 second
for an interval from v(o) to 10 v{o). However, from expression (33),
-30-
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one may calculate the relaxation time in this case,
—12
tg * 3.4 x 10 second

The result that

~

tR 7 > tR

jJustifies the condition adopted to specify this type of flow.




APPENDIX I

DERIVATION OF THE FLOW EQUATIONS
In this appendix, the derivation of the flow e¢guations, (26)-(28)
is given in detail. This 1s provided as a review for the convenience
of the reader.

Multiplying each term in the Boltzmann Eq. (6) by ¢ and integrating

with respect to ¢ in the velocity space, one obtains
' > - = - I
f\,bc'Vrfdc+fl,bF'chdc=f\/ladc (22)

Using the rule of integration by parts, one can write

Af gz - B 2z - B 4z -9mOes T3y
J ¥oe S de 5x. J Y efde - fe. 3%t dc A nclax1
(1)
and
cqy - =T
Fo 2L 98- 47 i dcodcs — £ QL d& =—n QY
ac1 gy =~ ® 8c1 ac1

(1)
where ¢ and T are separate independent variables of f, and ¢ i1s inde-
nendent of . Since the usual hypothesis is that ¢f tends tc zero as
c: tends to infinity in either direction, the integrand in the second
integral of Eq. (IT) vanishes in general. If ¢ denotes one of the
summational 1invariants, the right-hand side of Eq. (22) vanishes in
general. With expressions (I) and (1I) available, Eq. (22) can bLe

written in the following form:

r o ﬁ'\
vrowe—nia-vrwﬁv@’fo (1I1)

It is more convenient to specify the VDF and ¢ as functions not of

¢ but u, where

Hence, the next step is to express Eq. (III) in terms of the peculiar

*See for exawj:le S. Chapman and T.G. Cowling, Mathematical Theory of Non-Uniform Gases,
Reference 6.
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velocity i. Jn changing the variable, we must replace

——y —_—

\7(_\_11 by Vugb
=} by oy - BE
0x4 Ox , Su Ox,
and
§ -V Ly ¢ Vy-Yg - (V)¢

One may note that the mean values are, of course, unaffected by tic
change of variable. After the substitutions of these terms, Eq. (III)

becomes 3\
—— — — _

V.o n @+ @) -ndE @) T - - (G +E) - VIS +F - V=0

r

(IV)
Making use of the 1identity
—— s :—b —_—
Vu¢ - [u - Vr] c=u VY VrE, (v)
one can reduce Eq. (IV) to
7.V m/1)+r’;’l_vr-g+vr-n.l/;ﬁ
{ s oo
=3 —o -\——y_—. = e = S T =
= <c 2 Vgt (F-¢ - Vpe) - Yy -uW . Ve

{(VI)
The notation of two dots used in Eq. (V) is the so-called double product
of two tensors. The significance of the bar placed over any quantity
means the mean value of that quantity.

In the following, we shall consider Eq. (VI) for the three known

values uf summational invariants. For the case,

Y, =1

t hen
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Vs = 0
Y, =0
Finally Eq. (VI) becomes
Ve(nc)=0

(26)

For the case

then S .
Yo = mé
ny, V. + ¢ = mmc (Vra)
n vt = kn®
Vp Yz =m Vi €
u Vr Yo 0
vu¢’2 = m
and

flence, Eq. (VI with the aid of Eq. (26), in this case, can be writien

Ve o (kn ) - mn [F- & (V&) = 0 (27)

For the :case,

Vo = km @+ D)7

then




and

With the aid of Eq. (26), Eq. (VI) can be reduced to

v . [E k—ngl)g]+€'l:v'(kn®zl + kn® - (Vg)—mn:é .

-35.
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APPENDIX II
FUNCTIONAL RELATIONSHIP BETWEEN
THE ELECTRON TEMPERATURE AND THE MEAN VELOCITY

In this appendix, we shall be concerned with the acquired knowledge
of the variation of the electron temperatnre in a rectilinear flow. In
the text, rectangular coordinates are chosen and the rectilinear flow is

along the first coordinate, say x;. In the case of the "anisotropic
flow", we have

d 4. - d =
dxi_ (VP dx1 @9 0 (408)
d
&2 ®, v’ = constant (43)

Since the rectilinear flow is along the coordinate x,, Eq. (40a) ex-
presses the fact that the temperature components perpendicular to the
flow 8, and €5, remain constant throughout the flow, whereas the temper-
ature component along the flow ®,, decreases with the inverse square of

the mean velocity v. (See Eq. (43)). In the case of the "isotropic
flow",

8, = 0, = B (40b)

and

0,° v’ = constant (44)
Since 1n this case the electroa temperature components are equal to each
other, Egqs. (40b) and (44) imply that all three temperature components
will decrease with the inverse two-third power of the mean velocity.

In the above equations, the variation cf{ the electron temperature
1s expressed 1n terms of the mean velocity in a rectilinear fiow. In
order to exhibit the funclional relativuships between the electron
temperature and the mean velocity it is worthwhile to plot the varia-
tions of the temperature components against the mean velocity on log-log
paper. In such a plot they are straight lines as shown in Fig. 4.

in considering the velocity distribkution of the elecirons in the
entire flow, it 1s necessary to study the variation of the temperature

components 1n the velocity distribution funciion

2 P 2
= (D)2 0 e T ol MR M I
Q n(2ﬂfk) (@1 CPC) 3) exp [ Zk(@): + 8, + @3)
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If the rectilinear flow has a cylindrical symmetry, temperature com-
ponents perpendicular to the flow arz equal to each other. In this case,
it 1s convenient to speak in terms of ©, instead of ©,, and ®, instead
of ®, and ®;. After this transformation, the velocity distribution
function may bLe written

, 2 2
£ - n( __ m \% e mcy m(cZ - v)
2k, 2nk®z) 2k8, gpe,

Onc may note that, if the relationship between the mean velocit
Y | Y

and the coordinate x along with the flow is established, the temperature

components can be expresscd as a function of x in the electron flow under

consideration. If, for example, the Child-Langmuir law 1s accepted,

1.e., v °°x2/9

then the electron temperature becomes a defined function of the distance
in the flow. Replacing v, the mean velocity, in Egs. (43) and (44) by

the Child-Langmuir relation, one obtains:

. . —4/3
anisotropic flow: 6, = x 4

and
@2 = ®3 = constant
isotropic flow:

0, x4 i-1, 2 3.

These relations are plotted in Fig. 5
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APPENDIX III
EVALUATICON OF TIHE CONSTANTS AT THE EMISSION SURFACE

In this appendix, the calculations will be carried out under the
assumption that at the emission surface the VDF is

2

2 2

= 207 1y ony [— €W _mles” *e:” *co,
f(o) T Dexp [ kTJ exp [ % ], c, >0

=1 : c. <0
and the transmission coefficient D is

D=1 % mc. > es
m ey
= B ; A mc12 < e€
e

let us first integrate the VDF with respect to c,, c3, 1.e

LI )

CQ—-(D ,_.2=—aa

@ [+ ] 3 “
J F fde,dec, = 2;%— (2—?“1) D exp [- ﬁ,] exp [- T2CI:T] (VII)

The integration with respect to c; 1s as follows:

i o [ £ a 1 s
é .5 ©XP ¢ 2kT] dc, * f2 . % exp | 2kT] dc, (VIII)
=)
%
2e€ \
2 Gt (g_g__)/é .
= = L']‘_ C1 9 o m = m_cl__
2el C1SHPLIGLT! J exp [ 2kT]dC1
[+]
< S & W
2e€,” = kT Ot
(5=)

With the transform

s - s o J‘J&z‘eﬁmdy o Tl oo &,



and

s (ZkI)% dv
m

expression (VIII) becomes

K

A 3/2 (ﬁ‘e—) Vz
- kT oxp [-€€] + Q(Il__ e exp [-yldy + (2_51)
[o]

<]

J exp [-y"] dy
%

(F5)

Since € 1s abcut 0.5 volt and kT is about 0.17 electron volt even at
2000°K, the value of (E%) 1s cfcen much greater than vnity. The third

term has the same vaiue but different sign as the first term, so only
the second term is left to be evaluated. Expression VIII can therefore

be approximeted within an error of three percent by

XT Tt_I)
2ee  2m

According to Eq. (7} 1n thes text, one obtains from expressions (VII) and

(VIII)

nlo) = iﬂm_l‘l__ (kI) esp = Q\TV_]
25 k

Second, J can be evaluated by first considering

Y%
(2e€y 3 .2 © 2
J R exp [- £ 1 de, + f ciexp [— i —] dc;
o ee 2kT (&_:é)% 2kT
m
# y
(28€) I(%,%e-)
ch1 mey mc 1
s _ SGeE o 2ot - (LL
Yee P - Gy Expits _ia |
[¢] o]
K>
2 H
- kT o .
n P o) | e 8
m
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According to Eg.

J = 4&? L%}%i (1 - exp (-

and

%
v(o) = 2 (2KkT)
Tm

Third,

UM g e
mieh .1 exp | kT]J

(8) in the text, one then

&%)] exp [~

(1 - exp (- E%)]

the following

gets

temperature componeni ©; at the cathode surface:

(2=£y

f;) m

Again,

and

2

mcC1q P mC1 2l
—— (c1 - v)  exp (- ==)dc, + S )
2eb 2kT (2§§f
with the transform
2
mc, _ 2
2kT
R
de, = (2KD) gy
- 42

(C1 - V)Q

exp (- ==

integrals are considered in evaluating the



expression (IX) Lecumes

Ll

PR . L
T

S s/ 2 L _ [° 0 (2KkT)*
£ \g) (%‘T) y [y - ("’kT) vl exp [- v']ldy + 2 =)

ly - (2kT) v1® exp [- y?I dy

Since the value of (ﬁ%) is often much greater than unity, the above ex-

pression may be approximated by

Ty @kT)°"7 1°y7 [y - (-m- S I (X)
(:(S m [o] 2kT

Using the known general integrals

5 ‘ . (y + 1)/2
A yY exp [- ¢ y°] dy = - ﬁi.- 1 % 2 § S I-é—l a ;Y 7 even
c 2 2 2 2z integer
@ 3 —(¥ & L)/2 - !
i yY exp - « y?] dy = % a U / (L?Z—Lﬂ : Y = odd integer
o
and the expression of the mean velocity v evaluatcd above, Eg. (X), 1is

reduced to

(3E =8 (kI> (—nI 1

8vm

According t~ the definition of ©, Eq. (11), and the numler density nr

)
evaluated above, one can simplify the expressicr so that

@, - 3L =8,

A
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APPENDIX 1V
SOLUTION OF THE EQUATION

(1--Bovdye s 3B dy —dmet .
mv

e/s dx 3ue/a

The equation does not involve the independent variable x explicitly

and it may therefore Le reduced to a first-order differential equation

Ly letting
dv - 4 d’v . dy
dx 7 an A dv
Then
G A2
(1—_B4vydx+(1+_B—>y—4m— - 0
3u°/° nv
Furthermore, let N
2
y © 2

then the above equation may be written as

5B
2L o 873 2
dz .\ 3% . _ Bmje’
dv B
2!
(1+v8/3) 1_‘_,8-5/_3)
/ \

This is a first-order linear differential equation, so it can be solved

by the general methed. First, evaluate the integral

N
LJ/F)%Kém:—iliiiL dv (XI)
v(l = —?7;)
v\ '

Jt 1s more convenient. 1f one uses

va/a = w and dv = w_sla dw

o
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After this substitution, integral (XI) becomes

Second,

1]

du

w(w — B)

evaluate the 1ntegral

ol o 2
8nje A 1) Av
10 /3
mv (1l - —g%;)
Ry
_&TEJ_&? f (vsls _ B}VB/G o
m el

Brie” [/ gv - J B dy

5 /3
AL 5y5/
2)
ey iy # 48]
8/f3
[} Bl /
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The solution of the linear equation can Le written as

1o/, gmje’v (1 . 3B x|
(Va/s _ B)g m Sve/s (Vs/s _ B)2
V10/3 a
= M+8mew (. 3By
(v?/? - B)? i 5y5/°

where M 1s an integration constant. Sco

.
/ . pz
dv = 4 _ N7 M + 8_71432_V(1 + 3By :
dx (vs/s - B) m sve/s
IT{ the positive sign 1is chosen, then
dx - __v s M + 8_7Lje2y,(] + ;’)Ji_)]_"/”
dv vs,/s - B m 5vg/s

and
g ~ —1.,
x+L=f[MLQE,J_QX(lﬁu_OB_)]/“(l__ﬁ_)Vdu
m SVB/S Vs/a

where L 1s another integration constant. It 1s clear that two Loundary

conditions are necessary in order to evaluate the integration constants,

M and L
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1. INTRODUCTION

Ever since the discevery of thermioric emission, one-dimensional
electron flow has been an interesting problem. The theorv presented in
Part I ef this report deals with the electron gas in a rectilinear
fiow. 1In the theory, the electron flow Letween the cathode and the
anode can be described completely with four macroscopic guantities:

1. External force field F

2. Electron number density n
3. Mean velocity ¢

4. Electron temperature ©

The first three quantities are familiar to us since they have been con-

stantly used 1n the single-valued velecity theories. Experimentalil
methods to determine these macroscopic quantities were developed long
age and are not digcussad ia this paper. However, the.espplication of
the last quantity, in this context ithe electron temperature tensor 9,
may be a constructive contribution in this field.

In Part II of this report, we shall devote ourselves to the devel-
opment of a method which would enzlble us to measurc the electron temper-
ature in a rectilinear flow. Much of the attention will be given te the
design of an apparatus with which the experiment is carried out. The
present work i1s Ly no means a complete study of the subject, but the
results of this expeviment prnved to be an interesting exposition

concerning the temperaturec of the electron gas in 2 wparallel plane diode.

-A8 -



2. THEORETICAL CONSIDERATIONS

In order to achieve the objectives stated in the introduction,
theoretical consideration must first be given tc the design of an
apparatus wiich would be appropriate for the experiment to be performed.
The apparatus should have an electron source, say, a cathode and an
electrode acting as an anode to collect the arriving electrons. Since
the electron flow discussed in Part I of this report is of rectilinear
type, the structure of the apparatus is certainly expected to provide
a parallel-plane flow Letween the cathode and the anode. In studying the
velocity distribution of the electrons in the parallel-plane flow, use
can be made of a field-free region. Ideally, one would take =2 sample of
the electrons from the parallel-plane flow and set this sample of elec-
trons free in a field-free region. The space distribution oi the
current in the field-free region would then exhibit the velocity dis-
tribution that the electrons had befcre they were set free. With the
given definition of the electron temperature, an obsevved velocity
spread can readily be expressed in terms of an electron temperature.
This scheme would avoid the use of a probe usually applied in obtaining
information at the point of interest. Here, in contrast to the proke
measurements, the point of interest 1s placed at the boundary, hence
there 1s no probe disturbance in the measurements. The most appropriate
choice of a boundary would Le the collector electrode. Thus, allowing a
small sample of the flow to pass through an aperture into a field-free
region would accomplish the desired function  With an arrangement of
this sort in mind the essential feature of an apparatus can be sketched
{Fig 1). The apparatus consists of two parts, a parallel-plane diode
and a field-free anode chamber. Although the detailed description of
the apparatus will be given in the next section, its essential struc-
ture can be easily recognized A small section of ali the electrons
forced in a Pierce arrangement to flow parallel from the cathode to the
anode 1s permitted to enter a field-free region through a fine hole in
the anode. Due to their radial velocity component, the thin beam will
expand and the angular current-density distribetion can be measuvred by
again sampling a small section of that beam through a finc hole in a
slide. As a result the current-density distrilution at the back wall
of the ancde chamber gives us the information about the velocityv dis-

tribution of tnese electrons
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In this experimental arrangement, deviations from the idcal case
described above can be expected. They will be taken up in detail in
a later section and will turn out to be very small indeed. In this
section, however, we shall restrict ourselves to the calculation of the
current-density distribution at the back wall of the anode chamber for
the 1deal case.

For this calculation, Fig. 2 is an 1llustrative diagram of the beam
expansion due only to electron temperature. Anode plane is at z = 0;

anode orifice is set at the origin. The back wall of the anode chamber
is at 2 = Z.

il WS
Ol === ———"— 2(6+3) _
e — —2
g —
B f—— Z —

FIGURE 2 DEAM EXPANSION DUE TO ELECTRON TEMPERATURE

The calculation of the current-density distribution at the back
wall of the anode chamber is based on the velocity distribution function
dealt with in Part I of this report. Vrom the point of view of the
particle dynamics, the momentum and energy of the particles are the
primary variables in the dynamic problems. Consequently, in practice
one would not meet functions of the particle velocity higher than the
quadratic term. As shown in Part I of this report, the moments higher
than the third moment of the velscity distribution function do not
appear in all the equations. Owing to this fact, one 1s able to select
a representative VDF such as the one given in Eq. (30), Part I, of this
report. It is noted that the given function is only a representative
one in the class of the VDF's and will approach the "true function" up
to the third moment. However, the VDF given in Eq. (30) is the appro-

priate one for the purpose and can be widely used in this field. Since
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the structure of the apparatus will have a cylindrical symmeiry, the VDF
in Eq. (30) is now expressed with variables in the cylindrical co-

ordinates, namely,

) 2 z
(omy (fJn__)A e mey m(c, - v) ]
2nk®." 27k, 2k6,. 2ke,

f:—-

(1)

where n 1s the number density, v is the mean velocity, 6. and ©, are

the temperature components in the r and z directions of the electrons at
the anode orifice.

With the velocity distribution function of Eq. (1), the calculation
can Le made in a straight-forward manner. Per unit area of the anode
orifice, the current between the concentric cones with apex angles 20

and 2(6 + 6) as shown in Fig. 2 1s

1(6.5 m m e crtinmiCd 3 ) 2 2\ 2
3(8,5) = n(2nk@r)(2ﬂiég) i dcZ { s (cz * e ) 2n ar dcr
Z
< expd- mcr2 _ m(c, - v)?
2k6 .. 2k 0,

The above integration over C, is carried from zero to infinity since only
the electrous wiih a position velocity component in the z-direction will
contribute to the current. Since the area of the anode orifice is Tro-,
the current density of the Z-plane between the polar angles 6 and 6 + &

Lecomes

j(8,8)nre”

J(6,8) = . Y =
nZ° (tan“(€ + &)= tan”6]

Since the angle & is small, C; may then be approximated by C, tan O

under the radical sign. Ordinerily,

mvo/2 > > kB > kO

r

z (2)




30 ihe above expression can be written as

’ )|
—af2 2 e -1
J(6,6) = ———13——— (1 + % tan’ 0) exp (- -1 - () - él tan’0) {}
rZ%cos 6 O 2k0, r
o[ ® 2 —1 ' e 5 _\
1 - exp< -~ —ﬂuLl(l + —Z tan"B) —'1 + Z% tan" (8 + &)
2k®zL 6. . 0.
. \
tan (0 + 6) — tan’0
where I, is the total curcent through the anode orifice,
Io =nvonm rog
Because
2 4 ® -
1 - exp<(— ~BY (1 + s tan’8) ~ {1 + =% ¢an?(6 + §8)) 1
2k0, 6L 0.
Iim _ L . _my
& -0 . 2L0
tan (8 + 8) — tan’0 g o

the expression of the current density at the 7Z-plane with a polar angle
® can be reduced to

Y ® —-s8f2 2 2 , 9 . —i3
J{9) = m—;ii-——(l + =L tan’6) (M) exp<— -M¥—{1 - {1 + =% van'8)
nZ’cos 6  Or 2k0,. 2k, O

For smali values of 8, this expression can be simplified to

0 Io » 2 2 ?1
J(0) = — (LLo) exp ¢~ 0L (3)
nZ” 2ke, L 2k&p f

This current-density distribution at the Z-plane against the polar angle

=83
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1s generally known as Normal or Gaussian law. Tt can also be written

as.
log, [%{%)l] = - no’® (4)
where
I
J(6) = —i% n

r‘:l—l

and
2]
myvy
n = ——
2k,

In this sguation, log.J(8) is a linear function of 0%, and the slope of
the straight line 1s n. Since Eg. (2) is valid in practice, it can he
found from the {low equations in Part I of this report that

Y% mv? = eV (5)

Therefore, the r-component electron temperature can be expressed as

= e¥Y
L n (6)

It may k2 noted that the beam radius at the Z-plane 1is large com-
pared with the radius of the anode orifice. TFor high velocity beams,
this Z-plane must be at a great distance from the anode. In this

experimental set-up,

Z = 1.200 1inch
2ro = 0.0135 1inch

~ hen Z/2rO = 89. In this case the be~m diameter at the Z-plane 1s
expectad to be much larger than the diameter of the anode orifice. This
justifies the consideration made 1n the calculation that the anode
orifice can be regarded as a poini source in this experimental arrange-
ment.. If the beam diameter at the Z-plane 1s not much larger than the
diameter of the anode orifice, a cecrrection has to be made for the

finite sizc cf the ancde orifice.
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3. EXPERIMENTAL APPARATUS

The diagram and the apparatus .are shown in 3a.and :b. Eussentially,
the apparatus i3 a paraliei plane diode {Fig. 1) which has cylindrical
symmetry with respect to the z-axis. 1In this design, the anode 1is
stationary and the cathode is movakble. Anode, detector and a toroidal
ring are all at the same potential V with respect to the cathode. A
small orifice of 0.0135 in. diameter is provided at the center of the
anode. The chamber behind the anole is almost closed and car be con-
sidered as a field-free region. Embedded in the back wall of the
chamber is a running slide on which there is another small orifice of
0.0135 inch diameter. It 1s this orifice which acts as a movalkle
opening on the back wall of the chamber.

A great effort has been made to have a parallel electron flow in
the diode. When the cathode-anode spacing is small compared to the
radius of the cathcde, the electron flow close to the z-axis can be
considered as parallel to the z-axis. 1t may be noted that the beam
forming electrode is of the Pierce type, which is helpfdl in mzintaining
a parallel electron flow when the cathode-anode spacing and the poten-
tial difference V are increased. The potential on the beam forming
electrode 1s so adjusted that the current to the toroidal ring 1s small
or zero. The electron ‘emitter 1s made heavier than the ordinary cathode
sleeves to insure its flatness and to increase the heat capacity. An
emission paste of half BaCO; and half Srl0Os; is used and the top of the
emitter is electrophoretically coated with 4.4 mg/cm”. The coated sur-
face looks very homogeneous under the microscope .

Electrons which have emerged from the first orifice and also get
through the second orifice will then Le collected by the detector.
The disturbances caused Ly the anode orifice will be considered in
Section 4, as aberrations. When the disturbance 1s small, thc electrons
emerging from the anode orifice actually constitute a sample of the
electrens arriving at the anode plane. In Section 4, it will also Le
shown that the flight of the electrons in the chamber is affected very
littie by the mutuzl repulsion force oi ithe electrons. Therefore, the
e lectrons having emerged from the anode orifice cau bz cunsidered as
flying through the chamber with their initial velecities at the anode.

As a result, the current density distribution on the back wall of

the ¢ imber is 2 direct consequence of the velocity distribucion of
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b

electrons at the anocde. The detzcter current indicates the current
density at that point on the back wail of the chamber, at which the
orifice of the running slide 1s set. By pulling the running slide, one
may obtaln the current density on the back wall as a function of r, the
radial distance from the z-axis. From this information the electron
temperature at the anode plane is evaluated.

Since the anode 1s supposed to collect all electrons which arrive
at the anode without disturbing the electron flow, the electron flow 1in
the various cathode-anode spacings can be considered the samc as long as
the same anode current is maintained by adjusting the anode voltage.
When the same anode current 1s maintained, the anode plane can be placed
at any distance from the cathode surface to determine the electron
temperature at that plane. For one value of anode current, the electron

temperature can then be determined as a function of the distance from
the cathode surface.

7
S '.“L~ . *

FIGURE 4 .AFPLICATION OF GAUSS® THREOREM 10 A
CIRCULAR APERTURE
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4. ESTIMATION OF ABERRATIONS

As describted in the preceding section, the apparatus 1s designcd
for the purpose of approaching the ideal case of t. e experiment. How
good an approximatien is attained can be seen in the study of the
aberrations in this arrangement. It 1is conceivable that thrce kinds of
aberrations would exist in the experiment. First, the presence of the
anode orifice will cause an electron lens efieci un the emerging Leam,
second, the emerging beam will undergo an expansion due to 1ts space
charge effect; third, the secondary electrons from the anode orifice
will also give rise to a current-density distribution at the back wall
of the anode chamber. Each of these effects will Le estimated separately

in the following threc paragraphs.
4.1 Electron Lens Effect

The estimation of the divergent action of the anode orifice 1s made
as 1f there were ho velocity spread in the electron flow. Consider a
cylinder (Fig. 4), symmetric with respect to z-axis, of cross-section
area Tro~ and length 1, + 1,, jusi long enoupgh so that the electric
fields across the ends of the cylinder are sutstantially uniform over
the area. Thus, Ly Gauss’ Theorem,

1o . .
27‘1‘0 f EI'(Z) dz = — Tro '\E]_ - Egi - 47'2rc‘ (11_ * 12)1".6
_11
cr
1o To
I E(z) dz = - 5 (Es = E2) = 2nro(1y + Lo)ne (7)
_11

where n 1s the number density of electrons 1in the cylirder, [. and E,
are the electric fields at the lefc and right ends of the cvlinder, and
E . 1s the radial compcnent of the electric field across the mantel sur-
face of the cylinder.

Since the axial velocity of the eiectrous can Le regarded as
constant 1n the cylinder, the edge electrons will gain a radial com-

porent of velocity equal to

*See preceding page.

BRI RO e vaa T



co

In view of Eq. (7), the gain of the radial component of velocity 1is due
the additive result of two divergent actions: one comes from the

c
hange of electric field caused by the anode orifice, the other comes

the presence of space charge. The first action will be trecated as
an electron lens effect!4; the seccond action zs a space charge etfect.
To estimate the electron lens effect, oue must cktain an expression

for the radial velocity. From Eq. (8)

91'0(E1 i ll::Q
oy s R e (
2my

W
-

More explicitly, each electron entering the left end of the cvylinder has
the same velocity as given in Eq. (5) in the direccion of the z-axis.
Passing through the region of the cylinder, each electron will gain a
radial component velocity as given in Eg. (9). Ther tleir ratio will

be

! C_l'___ ro(E1 'Ee)
v 4V

where E;, 1n a space charge limited disde, 1s

and E2, 1n the anode chamber, is

E2=0

To describe the electron lens effect, we may Lest express the

i effect in terms of a polar angle 6, (at the center of the orifice) which
the cross-szcticnal area of the beam at the back wall would subtend. In
& doing so, we have
“606-
Py = IR MRS N TS AT T T AT P - o Ko



8, = arctan g% (1 + %?) (10)

In Fig. 6, this polar aagle 6, 1s plotted against --. It should be
To

noted that the electron path depends only upon the shape of the poten-

t
tia: ficld and not upon the magnitude of the potentizl. As long as the

ct

configuration is maintained, the change of the anode potential should

not cause any change of the dzflection angle.

4.2 Space Charge Effect

Based on the analysis given by Spangenbergl5, one can also estimate
the beam spresad due only to space charge effect. For the purpose of
analysis, it 1s convenient to start at a point where the radial velocity

of the electrons can be considered zero. Assumed conditions are:

a. Electrons in the beam are distributed in a rotational symmetry
with respect to the z-axis,

rr

The axial velocity of the electrons in the beam remains the

same 1n the consideration.

The analysis was primarily developed for high velocity electron beams.
If there were no velocity spread in the electron flow, the beam spread
thus predicted for the case of low velocity elactron Leams should still
be reasonably accurate.

When the diode (Fig. 5) is space-charge-limited, the following

relation exists:

9 D f
1 (loggY)
N3
wheve Y = 25—, r is ihe radius of the clectron bcam a2t position Z, and rg

I‘o,
iz 1ts radius at the orifice Although Eg. (11) cannot be expressed ia

terms of elementary fumctions, 1t 1is clear that the percentage iacreasc

o

BGtiniay

in the beam radius depends only upon the ratic of Z and D. Since ro and
Z are knows in this experiment,; Eq. (11), for the convenience of indica-

ting the functionai re'ationship, can also bLe writien

"y

Y = v {(D/ro)

-6 =
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g the =pace charge eifect on the same Lasis for comparison,
we have

= t raY
€, = arc tan -—
Z

In Fig. 6, this volar angle 6, 1s also plotted agaiast D/ro. If the
diode 1is in space-charge-limited operahion, the beam expansion due to
the spece charge effect ic also independent ¢ ¢ anode potentcial.

From Eqs. (7), (8) and (11}, the radial velocity that an electron
would gain before reaching the back wall is the sum of the velocities
due to the electron lens effact and those due to the sp:.ce cliarge effect.
In Fig. 6, the sum of the polar angles, 6; and 6,, is also plotted
against D/ro.  Because

tan 91 s tan 62 ﬁ tan (61 + 62), (91 + e?) < 90°

(C; + 8,) 1s a maximum polar angle estimated for the beam expansion ir

this experiment.

4.3 Secondary Eiectron Effect

In order to examine the ef{fect of secondary electrons produced at
the anode orifice, we shall calenlate the current-density distribution
at the back wall of the anode chamber due to the secondary electrons

alone. In this calculation, the emitted secondaries are considered to

)

enter tte field-free region with negligible muiual interactions.
23
= D - ———
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Taking the yield factor to be unity, secondary slectrons thus produced
can be expressed as:

nk® % tw
I =0 2L (12)

In the work of secondary electron emission, it has been reasonably
accepted that the angular distribution of secondary electrons follows
the cosine law, independent of the angle of incidence of the primary
electrons. In other words, the number of secondaries emitted per unit
solid angle is greatest in the direction normal to the emitting surface
and decreases with i1ncreasing a2ngle of emergence 6 as cos 9. Consider-

ing the secondary electron er ission per unit area cf a2 plane surface at

xorz' |
P
=]
.--9'
: Y R L
|
< e e g ) 0 /Tl i f/|L/ .
s Lo — i J zoy'
= I
// |
y or x'

FIGURE 8 SECONDARY ELECTRON EMISSION FROM AN ORIFICF

the crigin {Fig. 8) one can write

di
—F% = h' cos 8’
in the orimed coordirates, or
i
di
-5 = h cos 6
. dQ (13)
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i1n the unprimed coordinates, where 1, is the secondary electron current
per unit area of emitting surface, {1 is the solid angle which P subtends
at the origin, and h is a propertional censtant.

To describe the secondary electron emission from the inner wall of
an orifice, we consider that the current at P is the sum of the contri-

. .

il plane surfece 11 ore revoiuction with respect to the

y &
axis of the ice. This is equivalent to the case where the emitting
sur face stays stationary but P is revolving around the Z-axis. Then the
current at P would be the same as the current to the ring (generated by
P in this manner) from the small plane surface at the origin. Thus, Eq.

(13) is written:

471,
o = h sin’ 8 cos ¢
R“d6d
then
dI o, T2 _
-=S$_ = h sin® 6 [ cos & 4 ¢
n°de s
./4
or
dl
—S- = 2h sin® 6
n?2y1n
nauv

This describes the angle dependence of the secondary electron emission
per unit area of a cylindrical surface at the origin.

Now, the secondary electron emission of an orifice can Le expressed

S2s - Hsin® 0 (14)

where I, is the secondary electron emission of an orifice, and H is a

proportionzl constant. By normalizing the expression, one finds that
31
H = -2
——
onp
65



In deriving Eq. (14), it 1s assumed that t, << ro << R. Let Jg be the
current density at the back wall of the anode chamber due to the second-

ary electrons alone, then

J(8) =
From Eg. (i4), we have

dI
-5 = % I sin’ 0

d6
since
d6 _ cos’ 8
dr 7
then
3l . 25 3
Js(e) = an? sin O 83 9 (15)

This gives the current density at the back wall of the anode chamber as
a function of the polar angle at the center of the anode orifice, if
only secondary electron emission processes are considered. In Fig. 9,
the value of sin® 6 cos® € is plotted against 0.

In order to see the effect of the secondary electrons in our
measuremants of current density disvributior at the Z-plane, Eg. (15)

can be written as

- Yy 1
Js(8) = ;E% {ijJL (£)4 singecossex
nz k81'0 n /‘

or

A
Jigh ¥l _.h_ K . 2 26
I g (ﬂ) sin Scos

in the light cf Eq. (12). In this experiment, for example,

oW - ;

o 2
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and

26.6

3
"

then

J(6) x 107
3(0)

1IN
W

This ratio is very small as compared with that in Eq. (4). It will be
seen that the ratio, J(8)/J(0), encountered in the measurements, is
always greater than 107'. Hence, the secondary electron zffect is
entirely negligible in this experiment.

4.4 Conclusion

Iit the study of this arrangement. estimations of the aberrations
have been made for each of these effects. It 1s rather fortunate that
the beam expansion predicted from the existing electron temperature
alone 1s much larger than all the effects arising from the aberrations.
This wili also be seen in the next section where the experimental re-
sults are presented. Since the current-density distribution at the Lback
wall of the ancde chamber 1s predcminantly due to the electron tempera-
ture, the velocity spread of the emerging electrons can readily be
expressed ir terms of an electron temperacure.

.5 Experimental Results

Before we present the current-density measurements at the back wall
of the anode chamber, i1t would be proper to assure that the assumptions
made in the theoretics! considerations are fulfilled. Particular atten-
tion has been paid to the activation of the large surface cathode, and
the proper performance of the diode has been carefully checked. Mcasure
ments of the space charge flow for different cathode-anode spacings have
been carried out. The results are shown in Figs. 10 and 11. The
straight lines in boch figures represent the theoretical Child-Langmuir

space-charge law in logarithmic coordinates; first, in the form

—s/2 2

TAY oD
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second, in the form

. T 5/ 2
JAD 'QV/
vhere
. . . . 2
JA 1s the current density ir ua/cm
V 1s the anode potential in volts,
D 1s che cathode-anode spacing in cm,
and Q 1s a constant, 2.335.

The points in both figures represent the observed values reduced to

the corresponding units. Tt may be ancted that the micrometer drive has
a zero reading of about 0.018 zin. This would cause the last two sets of

points in Fig. 10 to deviate from a straight line, but the observed
values indicate very strongly that the Child-Langmuir space-charge law
is definitely applicable. Since in Sections 4.1 and 4.2, the Child-
Langmuir law has been used in the deductions, it is important tc verify
that the diode operates properl!y under appropriate conditions.

Having established the proper functioning of the diode with respect

the desirad electron temperaturc. As was shown in Section 2 of this
Part (Eqs. (4) and (6.)), the electron temperature at a given point of
interest 1s evaluated from the investigation of the current distribution

on the back wall of the arode chamber. The corresponding equations were

log, 48 - - no” (4)
ko, = eV (6)
n

where J(A)/J{0) is the relative current dersity on the back wall of the
anode charber, 0 1s the polar angle, n 1s the slope of Eq. (1), V 1s
the anode potential and @, is the r-component electron temperature.

In order to obtain the desired data, the cathode 1s set at a

definite temperature; witl the cathode micrometer drive, the cathode is

ST1-



set at a desired spacing; and a stable anode current 1s adjusted by
arranging for an appropriate anode potential. The current distribution
along the back wall of the anode chamber is then deterwined by measuring

the current passing to the collecter for diffeyent positions of the fine

chamber 1t is easy tn avpr
running slide in polar angles 8 wiih respect to the anode orifice. To
facilitate a comparison between the experimental data and the theoreti-
cal expressions, Eqs. (4) and (6), the measured values must be expressed
in terms of the logarithm of the relative current density, J(8)/J(0),
and the square of the polar angle, 9%,

A large set of measurements have been carried out and some of

the typical results are shown in Fig. 12, The points :in Fig. 12 repre-

1.
[

sent the measured v

ues znd show o zood indication of constituting a
straight line as required by Eq. (4). These results seem to indicate
very strongly that the spread of the electron beam behind the anode
orifice is caused by the radial velocity distribution of the electrons
at thc moment of entering the anode chamber, rather than by the dif-
ferent aberrations as lens action of the anode orifice, space charge
effect, and secondary emission. For, 1f there were no velocity sprcad
in the flow, the beam cross-section at the hack wall of the anode
chamber would (a) subtend a polar angle less than (8, + 8,) at the
center of the anode orifice, and (L) be independent of the anode poten-
tial applied. But nothing of that sort could be observed. First, the
beam cross-section at the back wall of the anode chamber svbtends by a
far greater polar angle than {£. + 6,) at the center of the anode
orifice. Second, the beam expansion has a strong dependence on the
anode potential. This makes the velocity spread of the electrons the
most important factor in accounting for the beam expansion, -ind confirms
the estimated small values of those aberrations as given in Section 4.
It was mentioned in Section 3 that in spite of different spacings
between cathode and anode, the same regions of the electron flow may be
considered as haviag the same characteristics, provided the cathode
temperature and the current density in the diode are the same. There-
fore, this method allows measuremeni of the electron temperature at any
arbitrary point within a parallel plane flow which 15 defined by just

two parameters, namely, cathode temperature and curr~nt density. In
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crder to obtain the desired electron temperature at a given point of

1

1
interest along the flow which is characterized by its cathodc tempera-
‘ent density, one has to place the anode plane at the

ron

ture and its cur

e c
point of ianterest and determine the elect temperature by observing
'_ fad

ck wall of the anode chamber as

-ancde spuciug and adjusting the

ad

n
the eurrent distribucion on the

ba
athod

cr
-

described above.. Varying the .

()

D

anode potential such that the anode current remains constant gives a
complete description of the electron temperature as a function of the
distance from the cathode. It may be noted that the so determined
electron temperature at each point of interest is an evaluation of a set
of data, obtained by measuring the current distribution at the back wall
of the anode chamber for the point in question, as described zbove.

A set of experiments was carried out to establish the relationship
hetween the electron temperature and the distance from the cathode sur-
face for a given cathede temperature and anode current. The results of
these experiments for a constant cathede temperature of 1275°X, and for
different current densities in the flow are represented in fig. 13.° One
interesting fact may be immediately noted, namely, the decrease of the
electron temperature with the increase of the distance {rom the cathode
surface. This decrease of the temp:zraiure can easily he accounted for
if one remembers that in the theoretical part of this report, a decreace
of the temperature with increasing distance from the cathode surface was
predicted for the isotropic flow where the three temperature compenents
rc cyual to each other. The corresponding equation reads:

o
“

O, = v /¢ (1.44)
Although this equation establishes only a correlation between the elec-
tron temperature and the mean velocity «f the electron stream at the
point of consideration, it is easy to convert the expression, with
the aid of the Chilerangmuir equation, into a temperature-distance
tion. Imn Appendix II of Part I this relationship is derived and ac-
ing to Eg. 2, Part II, one obtains for the isotropic flow the desired

corielation beiween the electron temperature and the distance from the

e, » D*/°
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Since the data in Fig. 13 are represented in log-log coordinates,
any exponential dependency would present itself as a straight line, the
slope of which would correspond tc the expuneut of the iundependent
varieble (see also Part 1, Apr. II). For comparison, a -4/9 slope
representing the i1sotropic case is indicated in the same graph. Al-
though for large distances there is an indication that the electron
vemperature may follow a -4/9 power law, for smaller distances this 1is
obviously not the case. At this point no account can be given for the
deviation from the expscted dependemcy. Ouly a much more extensive
experimental investigation of the region close to the cathode surface
can provide sufficient data to allow further theoretical considerations.
They will be presented in a later report.

Tt may be interszstiny to compare the experimental results obtained

should increase with increasing plate voltage. Since in the usual
experimental arrangement the cathonde-anode spacing is kept constant, the
ahove statement is equivalent to the statement that the electron temper-
ature should increase with increasing current density. Figure 14 is
obtained by arranging the experimental data such that the electron
temperature is plotted against the current density with the distance as
parameter. One may note that the electron temperature tends to reach an
asymptotic value for high current densities.

One of the most startling findings in the experimental results of
this study is the extraordinarily high electron temperature as compared
to the rathode temperature. To make this point particularly clear, in
Fig. 15 the electron temperature at s constant distance of 0.13 cm 1s
plotted against the cathode temperature for two different plate voltages,
50 and 100 volts. Although the cathode temperature does not exceed
1300°K, the temperature of the electron gas at the anode orifice assumes
values of the order of 10,000 to 40,000°K. Before giving an explanation
of this phenomenon we should note that an agreement ¢f the temperature
of the electron gas with the temperature of the cathode is usually found
by the retarding field method at low cathode temperatures. 1In the
evaiuation of the data obtained from the retarding field measurements,
an imperiant assumption 1s made, namely, that the space charge in the
diode 1s negligible. Due to this assumption the range of these meas-

urements 1s usually limited to low cathode temperatures. In fact K at
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high cathode temperatures the e.:.perimentzl curves do not show the
expected abrupt bend, hence the evaluation of the electron temperature
from these curves secins rather doubtful. Since the electron temperature
from kigh temperature cathode has not becn exparimentally determined,

L

S . T ]
the above results do not contradict the agreemeui iovrd ai the low

(24

cathode temperatures.

Before concluding the experimental part, an attempt will be made to
explain the extremely high temperature of the electron gas close to
the cathode. Tkis explanation will rest essentially on the experimental
evidence that the temperatuzc of the elecirun gus decreases sharpiy 1f
the temperature of the cathode is lowered, as indicated in Fig. 15.
Althanzh the present apparatus is not sensitive enough to measure the
electron temperature for very low cathode temperatures, it seems reason-
able to believe that the temperature of the electron ges will approxi-
mate the cathode temperature in the lower regions. This assumption may
Le well supported Ly a closer examination of the emission mechanism of
oxlide-coated cathodes.

It 1s known .that tlie oxide coating prepared in the conventional
processes has a porous structure, the porosity ranging from 65% to about
85%12. Experimental evidence, !® that the outer layers of the oxide
coating are chiefly responsible for the electron emission, was found.
Figure 16 may represent a schematic diagram of such an oxide-coated
surface. This structure suggests that at low temperature the surface
grains may possibly be responsible for the entire emission. The re-
placement of the electrons lest by the surface grains through the
process of emission will bte supplied by electrons coming from the deeper
layers through a process of conduction in the oxide coating. Since the
electron einissinn 1n thls case may be considerad as originating from the
grains at the surface, the velocity spread, or the temperature of the
emitted electrons. would correspond to the thermal temperature of the
oxide coating as in the case of electron emissiorn from pure metals

Experiments!? have shown that conduction through the oxide coating
is due to two mechanisms actirg in paraliel--the electronic conduction
through the grains, predominating at low temperatures, and the conduc-
tion through the electron gas in the pores between the grains which is
preponderant at high temperatures  Since at higher tewperatures the
conductivity of the coating will decrease, on the other hand the emis-

sioi: will rapidly increase with increased temperature, +it is clear that
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at elevated temperatures the conduction will lag behind the emission.
Wicth this picture in mind 1t 1s not difficult to see that at high
temperatures a part of the cmissicn may come from the electron gas in
the pores between the grains. In the process of emerging from the
narrow channels between the grains, the electroas will probably suffer a
series of collisions with the heavy graip particles and may assume tem-
peratures which by far exceed the temperature of the graim particles.l8

It is 1nteresting to note that the atove explanation can also
account. for the fact that the electron temperature will increase if a
higher anode potential is applied. In a recent paperl? by Loosjes, Vink
and Jansen, it was found that under pulsed operation the velocity spread
of the emitted electrons from oxide coating would often amount tn

hundreds of electron vanlts.
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